Arnaud Legrand
Irène Marcovici
INRIA Grand amphi
Un automate cellulaire probabiliste (ACP) est une chaîne de Markov sur un espace symbolique. Le temps est discret, les cellules évoluent de manière synchrone, et le nouvel état de chaque cellule est choisi de manière aléatoire, indépendamment des autres cellules, selon une distribution déterminée par les états d’un nombre fini de cellules situées dans le voisinage. Les ACP sont utilisés en informatique comme modèle de calcul, ainsi qu’en biologie et en physique. Ils interviennent aussi dans différents contextes en probabilités et en combinatoire.
Un ACP est ergodique s’il a une unique mesure invariante qui est attractive, ce qui signifie qu’au cours de son évolution, il "oublie" sa configuration initiale. Je présenterai l’algorithme que nous avons développé pour échantillonner parfaitement l’unique mesure invariante d’un ACP ergodique. Puis, je présenterai les résultats obtenus au cours de ma thèse sur deux "problèmes inverses" : le premier consiste à étudier les ACP ayant des mesures invariantes de forme produit de Bernoulli ; le second est le problème de la classification de la densité, qui consiste à trouver un AC(P) dont l’évolution permette de distinguer une configuration initiale sur l’alphabet binaire tirée selon une mesure de Bernoulli de paramètre inférieur ou supérieur à 1/2, et que nous avons résolu sur les grilles de dimension supérieure ou égale à 2 et sur les arbres.