Alex Bredariol Grilo - Stoquastic PCP vs Randomness

14:00
Mercredi
9
Oct
2019
Organisé par : 
Mehdi Mhalla
Intervenant : 
Alex Bredariol Grilo - CWI et QuSoft
Équipes : 

 

Alex Bredariol Grilo  du CWI et QuSoft donne une conférence sur un résultat qui sera présenté a FOCS 2019, le mercredi 9 octobre a 14:00 dans la salle 406 du bâtiment IMAG.

 

 

 

 

Dorit Aharonov, Alex B. Grilo
(Submitted on 16 Jan 2019)


The derandomization of MA, the probabilistic version of NP, is a long standing open question. In this work, we connect this problem to a variant of another major problem: the quantum PCP conjecture. Our connection goes through the surprising quantum characterization of MA by Bravyi and Terhal. They proved the MA-completeness of the problem of deciding whether the groundenergy of a uniform stoquastic local Hamiltonian is zero or inverse polynomial. We show that the gapped version of this problem, i.e. deciding if a given uniform stoquastic local Hamiltonian is frustration-free or has energy at least some constant ϵ, is in NP. Thus, if there exists a gap-amplification procedure for uniform stoquastic Local Hamiltonians (in analogy to the gap amplification procedure for constraint satisfaction problems in the original PCP theorem), then MA = NP (and vice versa). Furthermore, if this gap amplification procedure exhibits some additional (natural) properties, then P = RP. We feel this work opens up a rich set of new directions to explore, which might lead to progress on both quantum PCP and derandomization. As a small side result, we also show that deciding if commuting stoquastic Hamiltonian is frustration free is in NP.