Jury :
De nos jours, des millions de sources de données différentes produisent une énorme quantité de données non structurées et semi-structurées qui changent constamment. Les systèmes d'information doivent gérer ces données tout en assurant la scalabilité et la performance. En conséquence, ils ont dû s'adapter pour supporter des bases de données hétérogènes, incluant des bases de données No-SQL. Ces bases de données proposent une structure de données sans schéma avec une grande flexibilité, mais sans séparation claire des couches logiques et physiques. Les données peuvent être dupliquées, fragmentées et/ou incomplètes, et ils peuvent aussi changer à mesure des besoins de métier.
La flexibilité et l’absence de schéma dans les systèmes NoSQL orientés documents, telle que MongoDB, permettent d’explorer des nouvelles alternatives de structuration sans faire face aux contraintes. Le choix de la structuration reste important et critique parce qu’il y a plusieurs impacts à considérer et il faut choisir parmi des nombreuses d’options de structuration. Nous proposons donc de revenir sur une phase de conception dans laquelle des aspects de qualité et les impacts de la structure sont pris en compte afin de prendre une décision d’une manière plus avertie.
Dans ce cadre, nous proposons SCORUS, un système pour l’analyse et l’évaluation des structures orientés document qui vise à faciliter l’étude des possibilités de semi-structurations orientées document, telles que MongoDB, et à fournir des métriques objectives pour mieux faire ressortir les avantages et les inconvénients de chaque solution par rapport aux besoins des utilisateurs. Pour cela, une séquence de trois phases peut composer un processus de conception. Chaque phase peut être aussi effectuée indépendamment à des fins d’analyse et de réglage. La stratégie générale de SCORUS est composée par :
1. Génération d’un ensemble d’alternatives de structuration : dans cette phase nous proposons de partir d’une modélisation UML des données et de produire automatiquement un large ensemble de variantes de structuration possibles pour ces données.
2. Evaluation d’alternatives en utilisant un ensemble de métriques structurelles : cette évaluation prend un ensemble de variantes de structuration et calcule les métriques au regard des données modélisées.
3. Analyse des alternatives évaluées : utilisation des métriques afin d’analyser l’intérêt des alternatives considérées et de choisir la ou les plus appropriées.Cette thèse présente les outils théoriques et logiciels pour SCORUS ainsi que des expérimentations avec MongoDB.